1-9-3-1- مدل ADIOS……….…………………………………………………………………………41
فصل دوم: حرکت تک ذره در پلاسما………………………………………………………………………43
2-1-تعریف فضای پلاسمایی……………..…………………………………………………………………43
2-2- رسانایی پلاسما………………………………………………………………………………………..44
2-3- پلاسمای نامغناطیده…….……………….……………………………………………………………45
2-4- حرکت تک ذره………….………………………………………………………..…………………45
2-5- معادلات میدان…………..…………………………………………………………………………….46
2-6- چرخش…………………………………………………………………………………………………47
2-7- سوقهای مغناطیسی………………………………………………………………………………………49

در این سایت فقط تکه هایی از این مطلب(به صورت کاملا تصادفی و به صورت نمونه) با شماره بندی انتهای صفحه درج می شود که ممکن است هنگام انتقال از فایل ورد به داخل سایت کلمات به هم بریزد یا شکل ها درج نشود-این مطالب صرفا برای دمو می باشد

ولی برای دانلود فایل اصلی با فرمت ورد حاوی تمامی قسمت ها با منابع کامل

اینجا کلیک کنید

2-8- سوقهای الکتریکی………………………………………………………………………………………51
2-8-1- سوق E×B……………………………………………………………………………………51

شما می توانید تکه های دیگری از این مطلب را با جستجو در همین سایت بخوانید

2-8-2- سوق قطبشی…………………………………………………………………………………………53
فصل سوم: بررسی اثرات میدان مغناطیسی خارجی بر ساختار قرص های برافزایشی استاندارد…..…………56
3-1- مقدمه……………………..……………….…………………………………………………………56
3-2 معادلات مغناطوهیدرودینامیک………………..…………………………………………………………58
3-2-1 معادلاتMHD ایده‌آل…………………….…………………………………………………………58
3-3- معادلات حاکم بر دینامیک قرص های برافزایشی……………………………………………………………63
3-4- روابط، محاسبات و فیزیک مسئله………………………..………………………………………………64
3-5- روش خود مشابه برای حل معادلات………………………………………………………………………68
3-6- حل عددی و بررسی نتایج……………..………………………………………………………………70
3-7- اثرات میدان مغناطیسی چنبرهای خارجی بر قرص برافزایشی استاندارد……………………….…………………74
3-8- حل معادلات در حضور میدان مغناطیسی چنبرهای خارجی و بدون رسانندگی…………………….………..…………75
3-9- حل عددی و بررسی آن…………………………………………………………………………………79
فصل چهارم: بررسی معادلات حاکم بر قرص برافزایشی در حضور میدانهای مغناطیسی و الکتریکی داخلی…….…………83
4-1- نظریه تک سیالی………………………..………………………………………………………………84
4-2- محاسبه میدان مغناطیسی و الکتریکی در قرص برافزایشی………………………………………..……………88
4-3- حل عددی و بررسی نتایج…………………..……………………………………………………………94
4-4- پیشنهادها………………………………………………………………………………………………99
منابع ومراجع………………………..……………………………………………………………………100
فهرست شکلها :
فصل اول: مقدمهای بر فرآیند برافزایش
شکل (1-1). نمایی از برافزایش کروی…………………………………………………………………………………………………………………………………………3
شکل (1-2). نمایی جانبی از یک قرص برافزایشی………………………………………………………………………………………………………………………6
شکل (1-3). نمایی از سیر تحولی یک سیستم پیش ستاره ای…………………………………………………………………………………………………..7
شکل (1-4). نمایی از قرص سیستم دوتایی…………………………………………………………………………………………………………………………………9
شکل (1-5): پتانسیل روچ یک ستاره دوتایی معمولی با……………………………………………………………………………………………………………10
شکل (1-6). نمایی از قرص برافزایشی اطراف یک مرکز فعال کهکشانی…………………………………………………………………………………..12
شکل (1-7). نمایی از نیروهای وارد بر ذره در حالت تابندگی ادینگتون……………………………………………………………………………………17
شکل (1-8). نمایی از چگونگی انتقال تکانه زاویه ای بین دو لایه وشکسان……………………………………………………………………………..27
شکل (1-9). نمایی از چگونگی رشد یک اختلال……………………………………………………………………………………………………………………….28
شکل(1-10): نمایی از به دام افتادن الکترون در قرصهای slim………………………………………………………………………………………………39
فصل سوم: بررسی اثرات میدان مغناطیسی خارجی بر ساختار قرص های برافزایشی استاندارد
شکل(3-1) : مقایسه امواج ماگنتوسونیک، سرعت صوت و سرعت آلفن……………………………………………………………………………………61
شکل( 3-2): خطوط میدان مغناطیسی در اثر دوران مواد………………………………………………………………………………………………………….62
شکل (3-3). نمایی جانبی از نواحی مختلف در قرص برافزایشی……………………………………………………………………………………………….71 شکل (3-4). نمایی از سرعت شعاعی در قرص استاندارد با فشار گاز غالب……………………………………………………………………………..72
شکل (3-5). نمایی از سرعت زاویه ای در قرص استاندارد با فشار گاز غالب…………………………………………………………………………….72
شکل (3-6). نمایی از سرعت سمتی در قرص استاندارد با فشار گاز غالب………………………………………………………………………………..72
شکل (3-7). نمایی از فشار در قرص استاندارد با فشار گاز غالب………………………………………………………………………………………………72
شکل (3-8). نمایی از چگالی در قرص استاندارد با فشار گاز غالب……………………………………………………………………………………………73
شکل (3-9). نمایی از سرعت شعاعی در قرص استاندارد با فشار تابشی غالب………………………………………………………………………….73
شکل (3-10). نمایی از سرعت زاویه ای در قرص استاندارد با فشار تابشی غالب…………………………………………………………………….73
شکل(3-11). نمایی از سرعت سمتی در قرص استاندارد با فشار تابشی غالب………………………………………………………………………….74
شکل (3-12). نمایی از فشار در قرص استاندارد با فشار تابشی غالب……………………………………………………………………………………….74
شکل (3-13). نمایی از چگالی در قرص استاندارد با فشار تابشی غالب…………………………………………………………………………………….75
شکل (3-14): نمایی از مؤلفه شعاعی سرعت در قرص استاندارد با فشار گاز غالب در حضور میدان مغناطیسی چنبرهای…….79
شکل (3-15): نمایی از مؤلفه زاویهای سرعت در قرص استاندارد با فشار گاز غالب در حضور میدان مغناطیسی چنبرهای……79
شکل(3-16): نمایی از مؤلفه سمتی سرعت در قرص استاندارد با فشار گاز غالب در حضور میدان مغناطیسی چنبرهای……….79
شکل(3-17): نمایی از فشار در قرص استاندارد با فشار گاز غالب در حضور میدان مغناطیسی چنبرهای………………………………..79
شکل(3-18): نمایی از چگالی در قرص استاندارد با فشار گاز غالب در حضور میدان مغناطیسی چنبرهای………………………………………………………………………………………………………………………………………………………………………………………………..80
شکل(3-19): نمایی از مؤلفه شعاعی سرعت در قرص استاندارد با فشار تابشی غالب در حضور میدان مغناطیسی چنبرهای………………………………………………………………………………………………………………………………………………………………………………………………..81شکل(3-20): نمایی از مؤلفه زاویهای سرعت در قرص استاندارد با فشار تابشی غالب در حضور میدان مغناطیسی چنبرهای…………………………………………………………………………………………………………………………………………………………………………………………………81
شکل(3-21): نمایی از مؤلفه سمتی سرعت در قرص استاندارد با فشار تابشی غالب در حضور میدان مغناطیسی چنبرهای…………………………………………………………………………………………………………………………………………………………………………………………………81
شکل(3-22): نمایی از فشار در قرص استاندارد با فشار تابشی غالب در حضور میدان مغناطیسی چنبرهای………………………………………………………………………………………………………………………………………………………………………………………………..81
شکل(3-23): نمایی از چگالی در قرص استاندارد با فشارتابشی غالب در حضور میدان مغناطیسی چنبرهای……………………………………………………………………………………………………………………………………………………………………………………………….82
فصل چهارم: بررسی معادلات حاکم بر قرص برافزایشی در حضور میدانهای مغناطیسی و الکتریکی داخلی
شکل(4-1): نمایی از مؤلفه شعاعی سرعت در قرص استاندارد با فشار گاز غالب در حضور میدان الکتریکی داخلی……………….94
شکل(4-2): نمایی از مؤلفه زاویهای سرعت در قرص استاندارد با فشار گاز غالب در حضور میدان الکتریکی داخلی………………94
شکل(4-3): نمایی از مؤلفه سمتی سرعت در قرص استاندارد با فشار گاز غالب در حضور میدان الکتریکی داخلی……………….95
شکل(4-4): نمایی از فشار در قرص استاندارد با فشار گاز غالب در حضور میدان الکتریکی داخلی…………………………………………95
شکل(4-5): نمایی از چگالی در قرص استاندارد با فشار گاز غالب در حضور میدان الکتریکی داخلی………………………………………95
شکل(4-6): نمایی از میدان مغناطیسی شعاعی داخلی در قرص استاندارد با فشار گاز غالب در حضور میدان الکتریکی داخلی…………………………………………………………………………………………………………………………………………………………………………………………..95
شکل(4-7): نمایی از میدان مغناطیسی زاویهای داخلی در قرص استاندارد با فشار گاز غالب در حضور میدان الکتریکی داخلی……………………………………………………………………………………………………………………………………………………………………………………………96
شکل(4-8): نمایی از میدان مغناطیسی سمتی داخلی در قرص استاندارد با فشار گاز غالب در حضور میدان الکتریکی داخلی……………………………………………………………………………………………………………………………………………………………………………………………96
شکل(4-9): نمایی از مؤلفه شعاعی سرعت در قرص استاندارد با فشار تابشی غالب در حضور میدان الکتریکی داخلی……………………………………………………………………………………………………………………………………………………………………………………………97
شکل(4-10): نمایی از مؤلفه زاویهای سرعت در قرص استاندارد با فشار تابشی غالب در حضور میدان الکتریکی داخلی……………………………………………………………………………………………………………………………………………………………………………………………97
شکل(4-11): نمایی از مؤلفه سمتی سرعت در قرص استاندارد با فشار تابشی غالب در حضور میدان الکتریکی داخلی……………………………………………………………………………………………………………………………………………………………………………………………97
شکل(4-12): نمایی از فشار در قرص استاندارد با فشار تابشی غالب در حضور میدان الکتریکی داخلی……………………………………………………………………………………………………………………………………………………………………………………………97
شکل(4-13): نمایی از چگالی در قرص استاندارد با فشار تابشی غالب در حضور میدان الکتریکی داخلی…………………………………………………………………………………………………………………………………………………………………………………………..98
شکل(4-14): نمایی از میدان مغناطیسی شعاعی داخلی در قرص استاندارد با فشار تابشی غالب در حضور میدان الکتریکی داخلی……………………………………………………………………………………………………………………………………………………………………………………………98
شکل(4-15): نمایی از میدان مغناطیسی زاویهای داخلی در قرص استاندارد با فشار تابشی غالب در حضور میدان الکتریکی داخلی……………………………………………………………………………………………………………………………………………………………………………………………98
شکل(4-16): نمایی از میدان مغناطیسی سمتی داخلی در قرص استاندارد با فشار تابشی غالب در حضور میدان الکتریکی داخلی…………………………………………………………………………………………………………………………………………………………………………………………..98
مقدمهای بر فرآیند برافزایش
1-1 مقدمه
قرصهای برافزایشی بدون شک یکی از قدیمی ترین پدیدههای اختر فیزیکی می باشند. قرصهای برافزایشی در مرحله ای از نجوم ظاهر شدند که گالیله1 در سال 1610 میلادی و هویگنس2 در سال 1659 میلادی پی به سیستم حلقوی زحل بردند که یکی از اولین کشفیات بوسیله تلسکوپ میباشد [1]. قرص زحل نوعی متفاوت با قرصی است که در این پایان نامه مورد مطالعه قرار میگیرد. قرص زحل مرکب از ذرات گرد و غبار و یخ می باشد که در حال فعل و انفعال گرانشی و برخورد میباشند. اولین قرصی که فشار در آن نقش مهمی را ایفا میکرد، در نیمه دوم قرن هجدهم توسط کانت3 و لاپلاس4 مورد بررسی قرار گرفت، که هم اکنون به نام قرصهای پیش سیاره ای5 و پیش ستارهای6 شناخته می شوند. بحث سر اینکه آیا منظومه شمسی از قرص تشکیل شده است، امروزه بوسیله بسیاری از مشاهدات تایید شده است [2]. با استفاده از نسبیت عام و نتایج حاصل از سیاهچالهها، مطالعه قرصهای برافزایشی به مرحله مهمی رسیده است که میتوان آنها را یکی از منابع مهم برای تایید وجود سیاهچالهها دانست. اگرچه شواهد حاصل از مشاهدات مستقیم برای قرصهای برافزایشی خیلی مشکل است، اما بیشترین نامزدهای احتمالی برای وجود آنها در گستره عظیمی از اشیاء مانند اختروشها7،هستههای فعال کهکشانی8 (AGN)، کهکشانهای بیضوی، دوتائیهای محکم9، منبعهای عظیم پرتو x کهکشانی و احتمالا شیء بسیار مبهمSS433 (که گمان میرود ستاره نوترونی باشد) می باشند. از این منابع مختلف بیشترین احتمال مربوط به دوتائیهای پرتو x ، اختروشها و هستههای فعال کهکشانی میباشند، که انرژی کل خروجی آنها (در انرژیهای بالا) از مرتبهerg s-1 1048-1045می باشد. هنگامیکه با چنین پدیدههائی مواجه می شویم، بهترین فرآیند برای خروج انرژی از طریق گرانش می باشد [3]. برافزایش، استخراج انرژی پتانسیل گرانشی از مواد در حال سقوط بر روی یک پتانسیل گرانشی میباشد. اگرچه سوخت هسته ای، منبع انرژی ستاره مرکزی است که اجازه می دهد در مقابل نیروی گرانش حاصل از جرم خودش ایستادگی کند، ولی بیشتر پدیدههای پرانرژی در جهان بوسیله انرژی پتانسیل گرانشی قوت می گیرند که می توانند از طریق برافزایش آزاد شوند. این پتانسیل می تواند ناشی از شیء بسیار پر جرم فشردهای باشد که در مرکز کهکشانها متمرکز شدهاند یا اجرام ستارهای بسیار جوانی باشند که بوسیله گازی که از فرو ریزش ابر باقی مانده است، محاصره شده اند. در تمامی این موارد، مواد بوسیله جرم فشرده مرکزی در حال برافزایش میباشند و انرژی پتانسیل گرانشی در شکل تابش و گرما آزاد می شود. به طور کلی برافزایش شامل فروریزش چرخشی گاز بر روی یک جسم چگال مرکزی می شود. مسئله برافزایش گاز توسط یک ستاره در یک حرکت نسبی نسبت به گاز، اولین بار توسط هویل10 و لتیلتون11 در سال 1939 میلادی و سپس توسط بوندی12 و هویل در سال 1944 میلادی مورد بررسی قرار گرفت. حالتی که ستاره در حال برافزایش نسبت به گاز در حال سکون باشد، اولین بار توسط بوندی در سال 1952 میلادی مورد مطالعه قرار گرفت و به برافزایش بوندی مشهور شد و این برافزایش به مقدمه و پایه ای برای مطالعه قرص های برافزایشی به شکل امروزی تبدیل شد. اهمیت آزاد شدن انرژی توسط فرایند برافزایش جرم اولین بار توسط زلدوویچ13 و نوویکوو14 در سال 1964 و همچنین سالپیتر15 در همان سال مطرح شد. هایاکاوا16 و ماتسوکا17 در سال 1964 میلادی فرایند برافزایش در ستارگان دوتایی را به عنوان منبعی برای پرتو ایکس ستارگان مطرح کردند و شکلووسکی18 در سال 1967 میلادی Sco X_1 را به صورت برافزایش روی یک ستاره نوترونی تشریح کرد [4،5، 6،7].
در نیمه اول قرن بیستم کاوشهای بسیاری توسط اخترفیزیکدانان در آسمان صورت گرفت که طی آن تعداد زیادی منابع رادیویی کشف شد که از این منابع می توان به اخترنماها اشاره کرد. اخترنماها به صورت قابل توجهی درخشان هستند و در تمام طول موج های الکترومغناطیسی، از رادیویی تا پرتو ایکس و گاما تابش کرده و درخشندگی آنها در طول زمان تغییر می کنند. این دو خصوصیت باعث شد تا شرایط ویژه ای برای تشریح و توجیه منبع انرژی در اخترنماها به وجود بیاید. سوالی که مطرح شد این بود که منبع انرژی عظیم اخترنماها چیست؟

1-2 برافزایش بوندی
یک برافزایش یکنواخـت متقـارن کروی را تحت میدان گرانشـی اطراف یک جرم نقطه ای در نظـر می گیریم. برافزایش کروی روی یک جسم گرانشی اولین بار توسط بوندی در سال 1952 میلادی مورد بررسی قرار گرفت و این نوع برافزایش به برافزایش بوندی مشهور است.
حال یک جریان متقارن کروی را در اطراف جسمی به جرم M در نظر می گیریم. جریان یکنواخت بوده و در جهت شعاعی یک بعدی می باشد. در این تقریب می توان از وشکسانی، میدان مغناطیسی و تابشی صرف نظر کرده و فرایند را بی دررو در نظر گرفت. تحت تقریب نیوتونی برای معادلات پیوستگی و اندازه حرکت، به ترتیب خواهیم داشت:
L/(4πr^2 ) d/dr (4πr^2 ρν)=0
dν/dr=-1/ρ dp/dr-GM/r^2
به طوریکه ν سرعت شاره بوده و برای برافزایش، منفی و برای بادها، مثبت است.
با در نظر گرفتن رابطه پلی تروپیک19 داریم:
p=Kρ^γ
در حالیکه γ ,K ثابت هستند.
با انتگرال گیری به معادلات پیوستگی جرم و برنولی20 می رسیم:
-4πr^2 ρν=M ̇

1/2 ν^2+γ/(γ-1) p/ρ-GM/r=E
به طوریکهM ̇ آهنگ برافزایش جرم است و در حال حاضر ثابت بوده و E هم ثابت برنولی می باشد.
در حالت همدما داریم γ=1 و در انتها معادله برنولی به رابطه زیر تبدیل می شود:
1/2 ν^2+p/ρ ln⁡ρ-GM/r=E
1-3 مفهوم قرص های برافزایشی
با استفاده از تابندگی اندازه گیـری شده و محاسبه طول عمر اخترنـماها، انرژی تابشـی آن ها از مرتبه erg1060 تخمین زده می شود، همچنین می توان اندازه منبع انرژی در اخترنماها را محاسبه کرد که به نوعی کمتر از cm 1015 می شود. اگر چنانچه فرض کنیم که منبع این انرژی مانند منبع انرژی ستارگان، منبعث از واکنش همجوشی هسته ای است، با توجه به اینکه بازدهی واکنش هسته ای حدود 7/0 درصد می باشد، برای حصول انرژی تابشی اخترنماها، به جرمی معادل با 108 برابر جرم خورشید احتیاج داریم که در شعاعی کمتر از cm 1015قرار گرفته باشد، که اگر چنین جرمی در این شعاع قرار گرفته باشد، آنگاه انرژی گرانشی بیشتر از انرژی هسته ای می شود و می بینیم که چنانچه انرژی گرانشی غالب باشد، با توجه به رابطه گرانشی E~GM2/R مقدار انرژی بدست آمده برای اخترنماها به راحتی حاصل می شود. در سال 1969 بود که لیندن بل21 مفهوم قرص های برافزایشی در اطراف یک سیاهچاله پرجرم را ارائه داد و نشان داد که منبع عظیم انرژی این اجرام ناشی از تشکیل قرص های برافزایشی در اطراف یک سیاهچاله مرکزی می باشد.
برافزایش در حالت کلی شامل سقوط ماده روی یک پتانسیل گرانشی می باشد و عاملی برای استخراج این انرژی گرانشی محسوب می شود [8]. زمانیکه مولکول های گاز حول یک جسم چگال مرکزی با پتانسیل گرانشی قدرتمند در مدارهایی دایروی در حال چرخش باشند، می توانند در یک مسیر مارپیچی شکل به سمت جسم مرکزی حرکت کرده و اصطلاحا فروریزش کنند، که این امر در صورتی امکان پذیر می باشد که انرژی مولکول های گاز و تکانه زاویه ای ناشی از حرکت در مدار دایروی آن ها بنابر عواملی مانند وشکسانی، تابش و … از آن ها گرفته شود [5،9].
اگر ذره ای به جرم m از بینهایت روی سطح ستاره ای به جرم M و شعاع R* سقوط کند، انرژی آزاد شده برابر خواهد بود با:
GMm/R_* =(R_s/(2R_* ))mc^2
R_s=2GM/c^2
که Rs در آن شعاع شوارتزشیلد 22 است.
برای یک ستاره متراکم مانند ستاره نوترونی با جرم حدود 3×〖10〗^33 g و شعاع حدود 〖10〗^6 cm ، انرژی آزاد شده کسر قابل توجهی از جرم در حال سکون ذره است، یعنی چیزی حدود 20% ، که نشان دهنده کارآمدتر بودن برافزایش نسبت به همجوشی هسته ای به عنوان منبع انرژی می باشد.
ستاره ای که در یک محیط گازی یکنواخت و ساکن قرار دارد، جرم را از اطرافش جمع می کند، که البته این برافزایش کروی یا همان برافزایش بوندی تنها زمانی اتفاق می افتد که گاز تکانه زاویه ای قابل چشمپوشی داشته باشد و ساده ترین نوع جریان برافزایشی محسوب می شود.
ذره ای را در یک مسیر دایره ای در اطراف یک ستاره در نظر بگیرید. اگر مدار ذره بتواند از شعاع بزرگتر R به شعاع کوچکتر r≪R برسد، انرژی آزاد شده تقریبا برابر با انرژی بستگی مدار کوچکتر یعنی GMm/2r خواهد شد و برای رسیدن به این مقدار، تقریبا تمام تکانه زاویه ای مدار بزرگتر، یعنی مقدار m√GMR باید منتقل شود. در نجوم، بیشتر جریان های برافزایشی چرخش سریعی دارند و یکی از مشکلات اصلی این است که چگونه تکانه زاویه ای منتقل شود، به طوریکه برافزایش همچنان پابرجا بماند. درحالیکه در جریان های اتلافی، انرژی می تواند به گرما تبدیل شود و سپس تابش شود، اما تکانه زاویه ای سخت تر منتقل می شود و یک قرص برافزایشی جریانی است که انتقال تکانه زاویه ای به سمت بیرون را انجام می دهد.
در حالیکه کل عالم در حال انبساط است، بیشتر موضوعات مورد مطالعه در نجوم، بدلیل رمبش گرانشی شکل گرفته اند. یک ابر کروی گازی یکنواخت و ساکن را در نظر بگیرید که تحت عامل خود گرانشی رمبش می کند. انتظار می رود که رمبش کروی و متقارن بوده و آنگاه جسمی شکل می گیرد که فشار در آن در تقابل با گرانش است. اگر ابر در ابتدا دارای چرخش یکنواخت باشد، آنگاه دینامیک آن تحت تاثیر نیروی جانب مرکز قرار گرفته که در مقابل رمبش در صفحه عمود بر محور چرخش، ایستادگی می کند. حتی اگر در حالت اولیه نیروی جانب مرکز ناچیز باشد، پس از رمبش ابر قابل ملاحظه می شود و قرصی با چرخش سریع در اطراف مرکز چگال شکل می گیرد که عمدتا توسط نیروی جانب مرکز در مقابل گرانش ایستادگی می کند [10].

1-4 طبقه بندی کلی قرص های برافزایشی

قرص های برافزایشی به طور کلی به سه دسته اصلی تقسیم می شوند که عبارتند از:
1) قرص سیستم های پیش ستاره ای
2) قرص ستاره های دوتایی
3) قرص هسته های فعال کهکشانی

1-4-1 قرص سیستم های پیش ستاره ای
همانطور که ذکر شد، کانت و لاپلاس مفهوم قرص های پیش سیاره ای را مطرح کردند، تا اینکه در سال 1995 میلادی، تلسکوپ فضایی هابل عکس هایی از تعدادی قرص در اطراف ستارگان جوان در صورت فلکی جبار تهیه کرد و شواهد رصدی کاملی مبنی بر وجود اینگونه قرص ها بدست آورد [11،12، 13]. به نظر می رسد که اینگونه قرص ها چه سیاره تشکیل بدهند یا ندهند، قسمتی ضروری از فرایند تشکیل ستاره بوده و قرص های پیش ستاره ای نامیده می شوند. آنها شامل گاز سرد نسبیتی، عمدتا H2 به همراه غبار هستند که معمولا ابعادی از مرتبه سال نوری داشته و جرمی از مرتبه 106برابر جرم خورشید دارند [14، 15، 16، 17]. گمان می رود که این قرص ها تا چند میلیون سال زنده بمانند [18]. هنگامیکه هسته ها در ابرهای مولکولی شکل می گیرند دارای ابعادی از مرتبه روز نوری بوده و شعاع این قرص ها بین AU 100 تا AU 1000 بوده و جرم آن ها از مرتبه جرم خورشید است [17، 19] و آهنگ برافزایش جرم در آن ها از مرتبه 8-10 برابر جرم خورشید در سال می باشد [10].
همانطور که ذکر شد حرکت چرخشی قرص برافزایشـی ناشی از حرکت گاز در مدار دایروی می باشد که این حرکت چرخشی اولیه در ابر های پیش ستاره ای بدین دلیل است که خود ابر، در حال چرخش به دور کهکشان می باشد و از آنجا که لبه ابر به سمت داخل کهکشان، سرعت زاویه ای بیشتـری نسبت به لبه ابر به سمت بیرون کهکشـان دارد، بنابرایـن ابر در حالت اولیه دارای گشتـاور می باشد و هنگامیکه فرایند برافزایش آغاز می شود، این گشتاور مانع از فروریزش مستقیم گاز بر روی هسته چگال مرکزی می شود. در طول فرایند برافزایش توده های غبار که به تدریج بزرگ می شوند، در نهایت هسته های سنگی سیارات را شکل می دهند. برای تشکیل سیاره غول پیکری مانند کیوان، هسته باید متعاقباً گاز قابل توجهی را از قرص و اطرافش جمع کند. البته تئوری کمتر پذیرفته شده دیگری هم وجود دارد که قائـل به شکل گیـری مستقیـم سیاره از ناپایـداری گرانشـی سریع قرص می باشد. به طور کل تحول قرص پیش ستاره ای توسط مقدار انتقال تکانه زاویه ای کنترل می شود.
تا سال 1995 میلادی بیش از 100 سیاره در اطراف ستارگان همسایه مشابه با خورشید کشف شد. حرکت ستاره به همراه سیاره شامل جابجایی دوپلری متناوب دوره ای قابل تشخیصی در خطـوط طیفی اش می شود. در این گونه سیستم ها مانند سیستم خورشیدی، قرص پیش سیاره ای تقریبا پراکنده شده است و ستاره و سیارات شکل گرفته اند.

قسمت اعظمی از قرص های پیش ستاره ای در ستارگان T-Tauri شکل می گیرد. ستارگان T-Tauri پیش ستارگان رشته اصلی هستند که معمولا از هیدروژن و هلیم تشکیل شده و حدود 2% از جرم آن ها را گرد و غبار تشکیل می دهد [20، 21، 22] و جرمی کمتر از 2 برابر جرم خورشید داشته و دمای سطح آن ها مشابه با ستارگان رشته اصلی با همان جرم است، اما آن ها بدلیل شعاع بزرگتر، درخشندگی بیشتری دارند. دمای مرکز آن ها برای همجوشی هیدروژن بسیار پایین است و در مسیر حرکت به سوی رشته اصلی از انرژی گرانشی آزاد شده نیرو می گیرند و بعد از حدود 108 سال به رشته اصلی می رسند و بسیار فعال و متغیر هستند.
تقریبا نیمی از ستارگـان T-Tauri دارای قرص هـای پیش سیاره ای هستند و ناپدید شدن این قرص ها به بیش از 107 سال زمان نیاز دارد. بیشتر ستارگان T-Tauri در سیستم های دوتایی بوده و احتمال می رود که میدان مغناطیسی فعال و بادهای ستاره ای و امواج آلفـن23 ، عامل انتقال تکانـه زاویه ای در این ستارگان باشند.
1-4-2 قرص ستاره های دوتایی
بیشتر ستارگان به صورت سیستم های دوتایی شکل می گیرند [23]. ستاره پرجرم تر سریع تر تحول یافته و به انتهای عمر خود می رسد و به یکی از حالت های کوتوله سفید، ستاره نوترونی و یا سیاهچاله تبدیل می شود. در این زمان ستاره دوم ممکن است همچنان در سیر تحولی خود در رشته اصلی باشد. اگر مدارهای این دوتایی بطور قابل توجهی به یکدیگر نزدیک باشند، ستاره دوم می تواند در حالاتی از حد روچ24 یا سطح هم پتانسیل گرانشی خود خارج شده و روی همدم چگال خود بریزد. بدلیل چرخش در مدار دوتایی و وجود مقدار قابل توجهی اندازه حرکت زاویه ای این انتقـال گـاز نمـی تواند به طور مستقیم انجـام پذیرد و در عوض یک قرص برافزایشـی در اطراف ستاره شکـل می گیرد. بدلیل وجود گشتاور وشکسانی در درون قرص، گاز به تدریج تکانه زاویه ای خود را از دست می دهد و با حرکت مارپیچی به سمت داخل توسط جسم مرکزی جمع می شود. همینطور که گاز به عمق چاه پتانسیل حرکت می کند، انرژی آزاد کرده و قرص را درخشان می کند.
جزئیات مطالعه اندرکنش سیستمهای دوتایی اهمیت تکانه زاویه ای را در برافزایش آشکار کرده است.
به دو دلیل بسیاری از دوتایی ها در چند مرحله از عمرشان مواد را انتقال می دهند:
الف) در دوره ای از تحولشان، یکی از ستاره ها در سیستم دوتایی شعاعش افزایش می یابد، یا جدایی بین دوتایی کم میشود، به نحوی که کشش گرانشی یکی از ستاره ها مواد را از لایه های بیرونی ستاره دیگر برداشت می کند (لبریز شدن حد روچ ).
ب) یکی از ستاره ها ممکن است در مرحله ای از تحول، مقداری از جرم خود را به شکل باد ستاره ای به بیرون براند، که بعضی از این مواد بوسیله گرانش ستاره همدم اسیر می شوند.
حالت توصیف شده (الف) اول بار در قرن نوزدهم بوسیله ریاضیدان فرانسوی به نام ادوارد روچ در ارتباط با تخریب یا بقاء مدار قمرهای سیاره ای مطالعه شد، که به این خاطر به نام او پیوند خورده است. ماهیت کار روچ بررسی یک ذره آزمون در پتانسیل گرانشی دو جسم سنگین است که در حال چرخیدن به دور یکدیگر تحت نفوذ جاذبه گرانشی متقابل هم هستند. با توجه به نیروهای گرانشی و مرکزگرای یک دوتایی، پتانسیل روچ در واحد جرم بصورت زیر می باشد
φ_R (r ⃗ )=-(GM_1)/|r ⃗-r ⃗_1 | -(GM_2)/|r ⃗-r ⃗_2 | -1/2 |ω ⃗×r ⃗ |^2
که r ⃗_1 و r ⃗_2 بردارهای موقعیت مرکز دو ستاره و ω سرعت زاویه ای در یک چهارچوب لخت می باشند. در اینجا ما مسئله برافزایش را با رسم سطوح همپتانسیل φ_R ادامه می دهیم (شکل 1-5).
همانطور که در شکل (1-5) نشان داده شده است، پنج نقطه لاگرانژی وجود دارد، که مهمترین آنها برای یک اندرکنش دوتایی، درونی ترین نقطه لاگرانژی یعنی L_1 است، که یک نقطه زینی بین دو ستاره میباشد و ساده ترین مسیر برای اینکه ماده بین آنها انتقال پیدا کند را نشان می دهد. بدین علت که مواد بدون
صرف هیچ انرژی از این نقطه انتقال پیدا می کنند. حد روچ یک ستاره، سطح همپتانسیل قطره اشکی شکل (در سه بعد) است که در نقطه L_1 با یکدیگر تماس دارند. اگر ستاره فراتر از حد روچ برود، مواد از طریق نقطه L_1 به ستاره همدم انتقال پیدا خواهند کرد. به علت اینکه مواد دارای تکانه زاویه ای می باشند، مستقیما به سمت ستاره همدم پیش نمی روند و در عوض، یک حلقه را در اطراف ستاره همدم تشکیل می دهند. اندرکنش های وشکسانی باعث خواهد شد که حلقه در درون قرص گسترده شود.

نقاط L_2 و L_3 (خط واصل بین این دو نقطه از مرکز دو ستاره عبور می کند) نیز نقاط زینی می باشند و نقاط L_4 و L_5 ماکزیمم پتانسیل هستند. چهار نقطه L_2 ، L_3 ، L_4 و L_5 نقاط تعادل ناپایدار هستند که ممکن است مواد در آنها گیر بیافتند.
ستارههای دوتایی از لحاظ جدائیشان به سه دسته تقسیم می شوند: دوتاییهای جدا، دوتاییهای نیمه جدا و دوتاییهای تماسی. در دوتاییهای جدا، هر دو ستاره در درون حد روچ خودشان هستند و معمولا هیچ مبادله ماده بین آنها وجود ندارد. اکثریت ستاره های دوتایی از این نوع هستند. در یک دوتایی نیمه جدا، یکی از ستاره ها به اندازه کافی بزرگ است که با حد روچ خودش برخورد کند و در نتیجه مواد از طریق نقطه L_1 به حد روچ ستاره همدم وارد می شوند. این دسته از دوتاییها تنوعی از اجرام را شامل می شوند: الگول ها25 [24] که ستاره اولیه یک ستاره معمولی می باشد، متغیرهای کاتالیسمیک26 [25] که ستاره اولیه یک کوتوله می باشد و دوتایی های پرتو x ]26[ که در اینجا ستاره اولیه یک ستاره نوترونی یا یک سیاهچاله می باشد. در دوتاییهای تماسی هر دو ستاره حد روچ های خودشان را پر یا بیش از اندازه پر می کنند و آنها یک شکل دمبلی عجیب را تشکیل می دهند که دو هسته ستارهای در یک پوش مشترک قرار دارند.
با توجه به تحول ستارهای، نوع یک دوتایی به علت تغییر شعاع ستاره ها تغییر می کند. به علت از دست دادن جرم توسط بادهای ستاره ای و تابش گرانشی تکانه زاویه ای سیستم کاهش می یابد، در نتیجه این کاهش تکانه زاویه ای باعث تغییر فاصله جدایی یک دوتایی می شود. بیشتر اندرکنش های دوتایی در سیستم های نیمه جدا رخ میدهند که از سرریز شدن مواد از حد روچ رخ می دهد. البته دوتایی های تماسی نیز درصد زیادی از اندرکنش ها را نشان می دهند، همچنین دوتایی جدا با جرم بالا و دارای پرتو x اندرکنش هایی را نشان میدهند که از طریق یک باد ستارهای قوی رخ می دهد. ستاره دهنده جرم در دورهای از عمرش مواد را به شکل باد ستاره ای به بیرون میراند و همزمان گرانش ستاره همدمش با غلبه بر انرژی جنبشی باد، مواد را به سمت خود میکشد. به علت اینکه مواد دارای تکانه زاویه ای هستند، تشکیل یک قرص را اطراف ستاره همدم میسر میسازند. در سیستمهایی دوتایی نیمه جدا که ستاره اولیه یک ستاره نوترونی یا سیاهچاله می باشد و ستاره دهنده جرم یک ستاره با جرم پایین (تقریبا کوچکتر یا مساوی جرم خورشید) باشد، شاهد یک دوتایی با جرم پایین و دارای پرتو x هستیم. سیستم هایـی با کوتوله سفید در متغیرهای کاتالیسمیک [25] شناخته شده اند. بیشتر آنها فـوران های مهیبی را به نمایش می گذارند. لایه هایی که جمع می شوند، تحت فرایندهای حرارتی هسته ای منجر به تولید انفجارهایی می شوند که به صورت تناوبی در قرص اتفاق می افتند. بعضی از این هـا برای قرن ها بود که شناخته شده بودند اما ماهیت فیزیکی آن ها کشف نشده بود.

دسته بندی : پایان نامه

پاسخ دهید